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It is shown that phenomenological equrrtionr, having the sense of equatious of 
~a~~~~ klmffcs for suspemian, and rhmlcgicat equations, describing the 
behavior of a mixhue wfth a carstautly changing structure, in particuiar, of a 
thixotropfc medium, can be obtained within the frameworlc of the Hnear 

~~~~~ of irreversible processes, The simplest structure of the defin- 
ing ~Q&@B has been considered from the viewpoint of dimensional analysis. 
The possfble role of diffusion effects in the flows of a thfxotropic medium is 
dfscussed. 

1. Among flutds with non-Newtonian rheological properties the so-called thixo- 
tropic media are of considerable interest. In the general case a rheological defiuiug 
equation, with coefficients which depend not only a~ the usual parameters of state 
but also ou a number of “structural“ parameters that satisfy the equations of “structural 
hinetics”, holds for a thfxotropic medhm. III suspensions whose flow is accompanied 
by the formation and the destruction of coagulates of suspendedparticles such structural 
parameters are the averagedcharactersitic.s of the &es and forms of the coagulates, 
while additional equations describe the hinetfcs of the particle coagulation pmceases. 
Interest iu thixotropfc medta of such type is connected, in particular, wfth the Latest 
researches on the rheology of blood, attesting to the strong fnfluence of coagulatton 
phenomena on its rheologioal, electrical and optical properties [ 1 - 41. 

A number of approaches are known to the description of thixotropic suspensions: 
from the most primitive, when an empirically obtained dependence on time is assum- 
ed fa the coefficient of visc&ty [5j, to the highly complex, when the coefficient 
of viscosity is provided with a memory of the prehistory of fhe flow [6]. The immed- 
iate &sure of the system of hy&~~~c equations with the aid of au equation borrow- 
ed from the coagulation kfnetics was effected in P, 8J. More general kinetic equations, 
allowing for the specifics of the phenomena in blood, were considered for the same 
purpose in [9]. The recent article [lo] co&&s au approximate mbs~tia~~ of 
Kesson*s rheological equation as a consequence of the hinetic equatfou in the case of 
coagulation equilibrium. We note that the idea of describing coagulation pheuomena 
in blood by the use of Smoluchowsld’t equations was first expressed in the littlelmown 
article [llj, The question of the feastbility of contructing a model of a thixotropic 
fiuid by the usual phenomeuological means, using thermodynamic concepts, has not 
been resolved to date (only inadequately substantiated attempts are known [12,X33). 

2. Let us consider a mixture cousisting of an incompressible Newtonian fluid of 
suspended particles with the same true density. Under a t~lational flow of the 
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mixture the particles “collide”, resultfng in the formation of coagulat of ftite 
firmness. The coagulates can cifsiakgrate under the action of hydrodynamic forces 
and be interchanged with the particles [9J, The mixture’s composition can be charact- 
erized by the average volume concentratiou C of the partictes, theapparentconcentra- 
tion H, the average numba n of particle& in a coagulat and the average volume 

w of a coagulat. If w, ~~~~of~~~~~alp~e~~ then w- E 
(u;, + w*), where nur, is the volume of fluid trapped (*locked“) in the coagulate, 

and H = C (w, + w+) / wo. The numerical conceutrations NP of particles 
and IV, of coagulat are related by N, = nN,, N,w = El, N,w, = C. 
By virtue of the constancy and equaUy of the phi&e den&&s the maas coacentrations 
are numerically equal to the volume concentrations. 

FCS simplicity of expa&rm {see Sect, 5) the part&&s are taken to be uondeform- 
able and of iuvarfnbk volume. Iu each coagulate the partkks adjoin the ~~n~g 
fhtid or the other particles or the bound Quid. We assume that the reMions between 
the area elements of the correspotrdfng separatkr cudocsr am wicptaly determiued by 
the average size of the coagul (for a specffSed concentration C 1. ALl the argum- 
ents below are carried out in the one-fluid appraximatton (for the mixture as a whale) 
without regard to ~~~ and ~~Q~~ (i. e. I in tbt wwsl kinematic 
variabks), 

T&e fundamental hyp&he&s fs that the total energy of tha mixture per unit of masS 
is given by the formula 

Here u1 is the barycentdc velocity of the mixture and WV and Uz arc the “volume” 
and the “surface” parts of the intemal encxgy. The fattu inclwk the tot31 anugy of 
the surfaces (free and cnanccttd) of all pa&Mes. By Wgy with tlrc mnp in 
[Sk] we pteume &at 

uv = UT (ST, c) + UP (SF, Wt NJ (2.2) 

uz = ur, ($2, W, NJ, s = ST + SF + sr, 

We also introduce notation for the derivatives of Up and Ux 

The indices T and F deuote the components of the fnterrtal energy U and of entropy 
,g as well as other quantBes that correqond to thermal and fluctuaffon motkx%s in 

the ‘mixture (here the coucept of fluctuation motion is applied to the particles and the 
coagulates; fluctuations are the hydrodynamicai coaaoquenees of the interections of 
the coagulat [143). 
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From the equations of COnSuVatiOn of mass, mom~~m and energy for the mixture 
we now successively obtain the equations of heat intake and of entropy balance. The 
original equations have the form 

a,u* = 0, dtC = -a,Jl 
P&4$ = --bth + pfk 

pap!3 = -8, (% + UkPIk) + pfk@k 

(2.4) 

Here JI is the diffusion flux of the particles, fk is the external mass force, qr 
is the heat flux, a, = NIX,, I& = dldt, dt = W+t. Besldec 48.(2.4) we still need 
to make nse of additional coagulate. diffusion equations, Starting from the results in 
[9], it is convenient to write lattu equations in variables N, and H = N,ut 

d&V, = -a,J,’ + G, dtH = -a,J,” -j- g 
(2,s) 

Here Ji’ and J,” arc, respectively, the numerical and the volume flows of the 
coagulet , G is the coagulate forbad rate, g is the rate of fluid entrapment the 
copgutatcr. The fluxes in (2.4) and (2.5) are related the equalities JI = uodI’ = 
CJ,‘iN,, and J,” = wJ,‘. From 4s. (2.5) it follows that 

a,w = Jl’ -+w-+ 
0 

+-k--w) 
a 

(2.6) 

From the energy Eqs. (2.4) we find, in the usual. manner, 

Aft.= a formal d~o~~~~~ into “~f~~t~rn~a~e~ compon&s we have ( 8 
defines the energy exchange between the degrees of freedom) 

&UT + hi) = -@lQTt - PTl#lk $_ 8 (2.7) 

OdtuF = -arQFl - PplkQk - 8 

41 = qT1 + !?Fis ptk = PTtk + PFlk 

Now using (2.2) -(2.6), from (2.7) we fist obtain eXpressi0~ for &(ST + 8x1 &SF 

and then, fUl.ly. 

(2.8) 

m = PZ/TT + PF/TF 
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The ~~rn~~c forces X' and fluxes YJ occcllrring in the dibbfpative funct- 
ion R are deffned by the form&w 

X1 = Tp - TT, P = T;T’Ti% (2.9) 

X8 =--in-++, Ye=G 

XS=Af2v,, ys:g 
( 

R=TT ““+g 

Without loss of generality, here we can -me AF = 0 and id&t@ A, with the 
hybtatfc psmlue p* Tlw @n&r coefffcientr A’* ’ can depend on the state 
parameters tbat are: c one of the temperature TT or TF, and undu spacfffc 
cmditiau, also the quantitfter W and N,. T&e conditions Condot Of *Cmyflility 

of tbermodynamfc equlibrlum when TT =: Tp and of arbffrary C, w a 

and are r&ized for qstems in which a $por@neous (at the expense of forces p and 
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X8 ) variation of the coagulation state takes place ~f~ci~Uy slowly, An example 
is suspensions of coarse particles, wherein Brownian coagulat can be neglected in 
comparison with the shear one. 

3. In the case of a quasistationary mode for the fhxtuation temperature Cl43 with 
the conduction terms neglected the second equation in ( 2.7) approximatiy reduces to 
the finite rcJation 8 (Xl, x9, X8) = -~PII&W According to (2.10) the 
right hand side here is proportional to 1% = Q$lr ; hence for lip follows the 
express&xl:: TF = TF (I,, c, TT, w,.Na). Then the formulas for Ys 
and Y” in (2.10) can also be written as G = G (I,, C, TT, W, NJ and 

8 = g (1s~ c, TT w, Na). Thus, the fluctuatb fntendty, the grow& rate 
of the number of coag@tes and the rate of fluid entrapment are represented as fimct- 
ions of the second invariant of the deformation rate tensor. When Ji = 0 (the 
diffusion is negligibly weak) 

(3.1) 

Consequently, using a Wear (in the sense of the relation between forces and fluxes) 
formium of norquUbdum thermodynamics, for N,, a and w we obtain non- 
linear equations of coagulatiou kinetics of a very general form (the right hand sides in 
(3.1) virtually become arbikary functions of thdr aqzmeuts if we complement the first 
three of relations in (2.10) by mqHnear noxrdissipative terms). Equations (3.1) are 
Comparable with the first moment equations in [9], so that we can kacethe connection 
between G, g and the probability characteristics of the coagulation interactions 
(the entrapment of the fluid was not taken into account in 193; this is not difficult to 
do by keeping in mind the analogy of with the condensation process Cl@. 

Only two equatioot are independent in (3.1) (see St& 2). In the particular case 
when the fluid =kapment is uniquely determined by the coagulation prowess we should 
assume w= w (C, N,) and then only me of these equations remains independent. 
If we additionally accept that C = con& and do not consider the heat exchange 

VT ss con&), tha the fix& and third equations in (2.4). the formula for p,k 
in (2.10) wltb coefficieIlk A:’ * indqcndent of Tp, and one of the equations in 
(3.1) form a system dexrfbing the motion of the simplest tbixokopic &id, viz., with 
onq skuctural parameter. 

4. In the model considered above it is partible to specify concretely the functions 
G and g and the transfer coefficients using empirical data or detailed physical con- 

siderations including the investigation of the hy~~~~ of fine-scale motions~ 
Methods of dimensional analysis can be used for investigating the structure of the iimct- 
ions occuring in the description of the medium. 

As an example let w consider a simple shear flow of a generalized thixokopic med- 
ium with one stmctural parameter. We make the dependence of the kazufer coeffici- 
ents on the fluctuation temperature under the assumption of the latter quaafatationarity, 
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1. e. * actually on tire rate of shear. Accordiug to (2.10) and (3. I), for such flow 

Ii = Zq(w, . * .)e, dwldt = z(w,...) (q 3 A:‘) (4.1) 

Let the shear&r- be a function of the shear rate e, of the liquid phase viscosity 
qo,. the tmc ooncentration C of the particlea, the den&y p of the mixture, the 

mean volume w of coagulate, the parameter kTT (k is tht Boltzmann constant), 
whitb cti- the intmfty of Brownian motion, and of the dime&m quauti- 
ties +, Xst * . -3 W&‘, W~~~~, - e -. The CffmeguiW co&ants xg and the 
corirtantt tf with the dimension of length are, by their origina, bound by the addit- 
ional relaw by wbkb the parameter w is connected with the other essential struct- 
ural parameters (-we recall that by aaatmption the model contains only one imkpendent 
structural parameter). it is evident that inat& of all these constants we can directly 
include the dependent structural parameters tbemseIvea among the arguments of z . 
Among tbue aret the apparent concentration & = a (c, w), the coagulat asy- 
mmetry index h =’ w’l*&,ax (w) (Imax is the maximum linear dimension of the 
coagulat ) , the relative dispersion of coagulates 8 (w) = (wmar - %ull)~w 
with respect to dimensions, etc. 

With due regard to these remarks we can write 

Further, we ass.ume that c = con& and occurs in f only in terms of fl, A, . . 

since the “phase” ccwnporriff~ of the mixture is determined precisely by the apparent 
concentration $I. The last of the argumaatr In f ia the Reynolds number R, for 
the coagulate. The mochanismr of tbixotropy a& nonlinear viscosity, as a rule, are 
not connected with the inertial effects (for blood, for inrtanct, the. modes when 8, 

Q 107 are of interest); therefore, from now ou we asume 

We see that two essentially dittinct mechanisms of nonlinearity of function z (e) 
exist. One of them is due to Brownian motion and is accompanied by the dep&ence 
of the viscosity on the size of the particles (see the last argument in f 1, which is 

fully con&tent with microrheological representations [lS, 171. The second mechanism 
is indpuldeut of Browuian effects and is caused by the: dependence of the ctruchtral 
parameter R, I, 8,. _ on e by virtue of the rcaond equation in (4. IJ. It is preeis- 

ely the second me&anism that wmqwndr to the case of a purely thixotropic m&urn: 
? = Zqoef (8, jc, 6, . . .) . From (4.3) it follows that when tfrre is no entrap- 

ment of the liquid (R = c = con&) in a monodisperse suspeneion (8 f 0) the 
vitcorfty L indeparrdcot of the absolute size of parttclee ff they vary in a geOmeibica&f 

similar manner {h = eon&). For spherical particles this conclualon baa b@en con- 
firmed experimentally and was repeatedly obtained on other considaratiot~ C133. 
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Formula (4.3) shows also that for a polydisperse suspension the visccaity is determined 
not only by concentration but also by the fractional composition (related empirical 
data have been presented, for instance, in [191). 

Let us now turn to the second equation in (4.1) which describes the variation of the 
average volume of a coagulate. First, wenotethatfor W = W(c, N,),C = COIlst 

and H = iY (c, W) the functions z, g and G differ by factors depending only 
on C and w. According to [9] the function G, and, consequently, z, can be re- 
presented as a sum of three summands z,, zj and z, which correspond, respectively, 
to the fusion, disintegration, and exchange interactions of the coagulat. For simplicity 
we assume that the exchange interactions are such that the numerical concentration of 
the coagulata is not changed: then 2,~ 0. 

Let 2, = q,(w, H, h, 6,. . ., e, qo, kTT) and zj = zj (w, R, h, 6, . . ., 
e, Ilo, Of), where at is the mean critical stress for the coagulate and q. occurs 

in zj only in combination with e, namely, in terms of the stress z (4.3). 
Then 

H,L,& ,... ;F 
T 

H,5,6 ,... ;$ (4.4) 

A purely thixotropic medium, in which the effects of Brownian motion are negligib- 
ly small, is deaodbed by the relations 

z = 2~1 (H, L 6, . l 4, H = H (w), h = L (w), . . . (4.5) 

$=we &,(H,S,(I ,... )-gj(H,b,d ,..., $ >3 
In the absence of disintegrations (61 = 0) and of fluid entrapment (H = C), if, 

I = caprst and 6 = ocnmt we obtain the well-known equation of shear co- 
agulation [15& In the general case the shear rate e is a time function e = e*rp 

(t ! t*) characterized by not more than two dimensional constants e* and t, 
Therefore, instead of (4.4) we can write 

(4.6) 

If the shear mechanism of coagulation predominates, then when e& > 1 we obtain 

t-cd= 0, whence follows the finite connectiar between z, e and w. 
Combining it with (4.31, we arrive at a model of a nonlinearly-viscous medium with 
a rheological equation that does not explicitly contain the partlcle size. The physical 
sense of the inequality e,t, > 1 is obvious: the typical time for a change in tbe 
structure (-l/e,) is very much less than the typical “hydrodynmic ” time t,. 
In the other limit case, when e+t, < i (for example, a small amplitude or a high 
frequency), under a periodic variation of e we obtain w = w,,(l + O(e,t,)). 
The constant w,, is found from Eq. (4.6) by averaging over the period. 

when e = 0 it is generally necessary to allow for Browuian effects. In the 
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absence of a spontaneous &inkgration of coagulates, instead of (4.4) we have 

dw kTT 
dt= qg - Q” (H, h, 8, . . .) 

We see that when H = tmat, 3. = mnat and 6 = con& the average size of the 
coagniates grows Uneazly, while the numerioal concentration Na - t-x. ThIsis 
in complete agree-t with the reselts of the kinetic theory of c~~~~ [9,20& 
Among the assamptious made we have not included any constraints an the muittpltcity 
of interactiaat; neverkless, (4.5) is consistent with the equatiork obtaked from the 
general kinetic equatkxxs 193 for patred collisions+ A reason for this can be the absence 
(in contrast, say, to the equattorks of ohemical k&net&$ of an interaction c~*~section 
among the independ& arguments of 2,. Equations of a form more geriexal than 
(4.5) adae when addftional ~~ agnments are Mroduced fn sa and zt , 
r~fk~t@ the phyrical properth of the coagulates and formed by u!dng the constants 
occurring in u, and VP as well as by allowing for the influence of f.Wte Ra on the 

coagulatloa 

5. Let us note certain possible gcneralizaticm and modifications of the arguments 
made in Sects. 2 and 3. 

1. We assumed above that the componentp, U, and U, of the&Wnal energy and 
a number of other quantities depend only upon two chara&ristics of the stmcture, viz., 

w and N (or Na and ii 1, i. e., on the ffnt two rnorn~~ of the ~~et~~ fenc- 
tion of coagolate size [9],]. Only ant of the moments was reolcoeed Wependent in Sect. 
4. However, it is possible that the quantities named depend a&o on ihe t moments. 
Thefr introduction implies the emergence of new summa& in the dWp#Uve function, 
of new defining equaffotu and of new cross effects, and leads to an increase io the order 
of the system of structural eqiathns. 

2, IO certain cases the fntcmal euergy St genually determ&@d not ot%iy by the size 
&tributfon of the coagu$at but also by more ref&ed statistical character&tics, for 
example, by the tzapped fiufd apron with respect to the engage X, to the 
amount of trapped fluid, etc. 

3. The allowance for the internal degrees of freedom -the mkorotation and the 
~~~efo~a~n of the coagulates -leads to a number of additional effects, in part- 
icularsr, the dependence of the &ctrrat.M temperature and of the rate of cmge of the 
stmcture on the immxiants of the micromotion tensors, wfthout affecting the general 
character of the model. 

4. If, as was done in [143, we exar&e a two-phnu: m@dim e-g of a 

liquid phase and of coagufiot, thea the fluid .entrapment is described as a phase trami- 
tion. IIZ cuttmst to the one -phase case, b the two --phau aW@s the ceded 

aa I s+r (or ac I a&$ scnrc is8 pmm&en of sta*. tiefew m antootropy of 
the tramfez pm can uirt, whilt amoeg the argumimts of the ~~e~c flnx- 
es in partfcular, of &nctiOa G, there may be present a&m scalan of the form 
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where xi? and X$ are, respectively, tensors of fit and second rank that have 
the meaning of thermodynamic forces (see (2.9)). 

5. Also possible is a multiphase analysis when the mixture is assumed to consist 
of a liquid zero and of a solid phase, each of which combine coagulates of like size. 
Combining the arguments in Sect. 2 and in [14,21]* we can find the rate Gn of 
formation of coagulates of n particles as a function (in the quasistationary case) of 
deformations rates and of numerical concentrations Nom of coagulates of different 
sorts. The equations for IVGm, in which F occurs, form an analog of the kinetic 
equations of coagulation for a discrete distribution by sixe [9]. One variant of a multi- 
phase model of such a type has been propcsed previously (see 11433. 

6. For the diffusion fluxes Jr , from (2.10) we obtain representations in terms 
of the gradients of P, T,, Tx, w and N,z with variable coefficients. As in [143, these 
relaticm take into account the f’hmtuation mechanism of diffusion intensification and, 
in addition, reflect a tendency to the smoothing of the mixture’s compcsition both with 
respect to concentration and to coagulate sixes. 

The discussions in Sects.3 and 4 did not take into accamt these diffusion effects 
and the conductive transfer of the fluctuation energy. Such an approximation is valid 
if the corWpOnd@ transfer coefficients (of the “fluctuation thermal condutivity” and 
the diffusion) are small and there are no zones of higher gradients of Tp, H, . . . . 
However, the fluxes may contain regions where the nondifferential terms of the corms- 
pending equations are also small, for example, regions whae I, z 0. From the 
point of view of the equations in Sects. 3 and 4, in these regions Tp = i”, and 
dw /at > 0 (a very slow Brownian growth of coagulates takes place). But if the 

transfer coefficients(for instance viscosityjdepend strongly on TF close to T, and 
on w, then the small absolute error permitted in the computation of Tp and w 
leads to large errors in the determination of the other quantities. Thus, the validity 
of the elementary models of a thixotropic medium is violated not only in the boundary 
layers with large gradients but also in the boundary layers of a special type-, where the 
conductive effects and processes induced by the shear in the flow (fluctuations, forma- 
tion and disintegration of coagulates) are simultaneously weak. A more exact analysts 
of the processes in regions where Is 0 0 can be made with the use of the method 
of singular perturbations. 

As a typical example let us consider the stationary problem on flows of Poiseille 
type in a plane sift ]Y]<i (Y-p/h is a dimensionless coordinate). Let 
the distdbution of the velocity u (Ii, be known and let it be required to find a timct- 
ion 2 0’) subject to the equation (all quantities below are dimenstonless) 

e (02’) - W (Y, 2) = 0, eDZ’ = 0 for Y = =t i (6.1) 

The ” degenerate” (when e = 0) solution 2, (Y) satisfies the equation W (Z,, 
Y) = 0. The differences between 2 and 2, are localized in the “boundary laycn” 

cloretotheaxfr~dwa~ofthechannel;hae Z-Z,=O(ea), a>O. The 
main interest is in the quantity Z0 (a) = 2 (0). 
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Let Z,xAY*, W/D=BZi,mK~,and Z-Z, when Y-&&with n&O, 
m>ir and k), 0. TtIeilin*nd of t&c orx5t EZI = i?z;;ncrk, 

WhCIlCC Z~&,++-%,,‘“Yk+*/ (k+f)(k+2). Forsome Y-8 thissolut- 
ion muat smw&Uy job up with 2,; therefore, we set 

A8n = &, + s-%#‘8k+8 1 (k + I) (k + 2) (6.2) 
Ancrk’ = &?&mPl I (k + 1) 

Hence 8 and 20 are found rrrrplicitly in twxw of the othar paxametezs of ths pa&em. 
The second relation tn (6.2) shows’thet ZP / 8 - 8-5 then from ths fiat fw 
an estimate of the ordcz of 2, and, ffnaily, the estimates 8 - e”tl-m)*k4i ad 

q-an. We~e~t~~~~a~~ 8 and 5 meyprovetobesub- 
stantwly i@wex then 8. 

Anakgow re~~ltr am obtafued wku solviug (6.11 by 814 method of i&gral r&at- 
ions. 

According to (2.7) and (2.10) the simplest eqwtfou for the fhwtuation temperature 
in a plane slit has the fozm 

s (kFTp’)’ - h (TF - TT) f- k, (u’)* = 0 (6.31 

If kp (0), kz (0) and b (0) are Mite and wwerc~ and (u’)’ y Y’, then n = 2, 
m=f and k =O aud,carrwquenUy, TP-TTm8 and 8-y’e. Withdue 

regard to (2,5) &s&d scrct. 4 w4 take it that tb4 numc41 conc4ntr4~44 of wa@ates 
satisfies the sf mpUff ed eqwtloa 

Here D, &, and &ro atcffnftoPndn~~onthc~~‘taxir,yI(a-_)f 
@ - 4>0, ~,&,a, and 6 arencmncgrlfve. Than R=Y, m=b, k=fiwhen 
p<arand m =a,k=awhen fl>a , etc. It ia aomwhet mow complicated 

to ml&e ~&mates for TF and Ns in non8tMonary flows, when an efdiMv differ 
entitiequathnir obtainedfor &* 
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