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1t is shown that phenomenological equations, having the sense of equations of
coagulation kinetics for suspension, and rheological equations, describing the
behavior of a mixture with a constantly changing structure, in particular, of a
thixotropic medium, can be obtained within the framework of the linear
thermodynamics of irreversible processes, The simplest structure of the defin-
ing equations has been considered from the viewpoint of dimensional analysis.
The possible role of diffusion effects in the flows of a thixotropic medium is
discussed.

1. Among fluids with non—Newtonian rheological properties the so-called thixo-
tropic media are of considerable interest. In the general case a rheological defining
equation, with coefficients which depend not only on the usual parameters of state
but also on a number of "structural® parameters that satisfy the equations of "structural
kinetics”, holds for a thixotropic medium, In suspensions whose flow is accompanied
by the formation and the destruction of coagulates of suspended particies such structural
parameters are the averaged charactersitics of the sizes and forms of the coagulates,
while additional equations describe the kinetics of the particle coagulation processes,
Interest in thixotropic media of such type is connected, in particular, with the latest
researches on the rheology of blood, attesting to the strong influence of coagulation
phenomena on its theological, electrical and optical properties [1 —4].

A number of approaches are known to the description of thixotropic suspensions:
from the most primitive, when an empirically obtained dependence on time is assum-
ed for the coefficient of viscosity [5], to the highly complex, when the coefficient
of viscosity is provided with a memory of the prehistory of the flow [6]. The immed-
iate clasure of the system of hydrodynamic equations with the aid of an equation borrow-
ed from the coagulation kinetics was effected in [7,8]. More general kinetic equations,
allowing for the specifics of the phenomena in blood, were considered for the same
purpose in [9]. The recent article [10] contains an approximate substantiation of
Kesson's theological equation as a consequence of the kinetic equation in the case of
coagulation equilibrium, We note that the idea of describing coagulation phenomena
in blood by the use of Smoluchowski's equations was first expressed in the littleknown
article [11]. The question of the feasibility of contructing a model of a thixotropic
fluid by the usual phenomenological means, using thermodynamic concepts, has not
been resolved to date (only inadequately substantiated attermnpts are known [12, 13]).

2, Let us consider a mixture consisting of an incompressible Newtonian fluid of
suspended particles with the same true density, Under a translational flow of the
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mixture the particles "collide”, resulting in the formation of coagulat of finite
firmness, The coagulates can disintegrate under the action of hydrodynamic forces
and be interchanged with the particles [9]. The mixture's composition can be charact-
erized by the average volume conceatration C of the particles, theapparentconcentra-
tion H, the average number 7 of particles in a coagulat and the average volume
w of a coagulat. If w, is the volume of an individual particle, then w = »
(wo + w,), where nw, is the volume of fluid trapped ("locked") in the coagulate,
and H = C (w, + w,) / w,. The numerical concentrations /Vp of particles
and N, of coagulat are related by Ny = nNg, Now = H, Npws = C.
By virtue of the constancy and equality of the phase densities the mass concentrations
are numerically equal to the volume concentrations,

For simplicity of exposition {see Sect. 5) the particles are taken to be nondeform-
able and of invariable volume, In each coagulate the particles adjoin the surrounding
fluid or the other particles or the bound fluid. We agsume that the reiations between
the area elements of the corresponding separation surfaces are uniquely determined by
the average size of the coagul  (for a specified concentration C ). All the argum-
ents below are carried out in the one-fluid approximation (for the mixture as a whole)
without regard to microrotations and microdeformations (i.e., in the usual kinematic
variables),

The fundamental hypothesis is that the total energy of the mixture per unit of mass
is given by the formula

E=S+U=45+0U
=5 =5 v+ Uz (2.1

Here u, is the barycentric velocity of the mixture and Uy and Uy are the "volume®
and the "surface® parts of the intemal energy. The latter inciudes the total energy of
the surfaces (free and connected) of all particles, By analogy with the reasonings in
[14] we assume that

Uv = Ur (St, C) + Ur (Sp» w, Na) 2.2
Us = Us(Ss,w, Ng), S = S7+ Sr+ Sz
U, o, W 8

o =T =g =W 35, =Tr 55 =1t

We also introduce notation for the derivatives of Up and Uz

g Uy Wp . Uy
30 = A, . = Axg, N, = Up, 'm" == iz (2.3)

The indices T and F denote the components of the internal energy U and of entropy
S, as well as other quantities that correspond to thermal and fluctuation motions in

the mixture (here the concept of fluctuation motion is applied to the particles and the
coagulates; fluctuations are the hydrodynamical consequences of the interactions of
the coagulat [14]).



On models of thixotropic fluids 927

From the equations of conservation of mass, momentum and energy for the mixture
we now successively obtain the equations of heat intake and of entropy balance. The
original equations have the form

azul = 0, dtc = """'ang (2.4)
pdiuy = —8;p;x + Pl
pdiE = —3, (q; + uxpu) + phatie

Here J, is the diffusion flux of the particles, fx is the external mass force, g,

is the heat flux, 9, = 9/0x;, d; = d/dt, 8, = 0/0t. Besides Eqs.(2.4) we still need
to make use of additional coagulate. diffusion equations, Starting from the results in
[9], it is convenient to write latter equations in variables N, and H = Nw

diNy = —8J, + G, diH = —8J," + ¢ (2.5)

Here J,' and J,” are, respectively, the numerical and the volume flows of the

coagulat , G is the coagulate formation rate, g is the rate of fluid entrapment the

coagulates, The fluxes in (2.4) and (2, 5) are related the equalities J; = wonJ,” =
CJ/IN; and J;" = wJ,. From Egs. (2.5) it follows that

J
dw=— —a,w e (2 — GW) (2.6)

N N
From the energy Eqs, (2.4) we find, in the usual manner,
pdU = — 019; — pncerx» e = a (Oxit; + Gyay)

After a formal decomposition into "different4emperature™ components we have ( 6
defines the energy exchange between the degrees of freedom)

pdy(Ur + Uz) = ~0,9r1 — prienx + 0 2.m

pd:Up = —a,gr1 — pruep — ©
4@ = 971 + 9r1s Pix = Prix + Prix

Now using (2, 2) —(2.6), from (2.7) we first obtain expressions for d;(St <+ Sx) d:Sr
and then, finally,

09S +0G =R, R=3 YX* (2.8
8==1
Gl=Psut+%ﬂ+‘q'ﬁ'- (m+*r'ﬁc;)

m = ux/Tr + wr/Tr
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The thermodynamic forces X* and fluxes Y* occurring in the dissipative funct-
ion R are defined by the formulas:
X=T¢r —Ty, Y=T7T70 (2.9
A A
X=—mt A, Y2=0G [A=-=2 4 L
+ N, ( Tr + Ty
X3=AING’ Y3=g
1 C y/
Xt=20a[Tr, Yz“=—"77;§(4ﬂ—-%:l-fz)

XP=0Tp, Yi=— 7:1;5 qr

C A
Xp= S optom—-row Ye=—Jf
¢ = o O+ Om — g0, X, Ji

Prix Prix
Xp'=ep, Yp'=— (WTT +7 - Aﬁzt)

Here A is an undetermined scalar introduced to allow for the incompressibility of
the mixture, Let us now write out the linear relations between the fluxes and the forces,
with due regard to the symmetry principle and the medium's isotropy. Omitting the
summands not germane to the subsequent arguments and not contributing to the dissipa-
tion (see [14]), we obtain

Yr-——zAr"X., AY T = Ar.¢ (S,T-"-'»i, 2, 3) (2. 10)

Y =04"'X (s,r=4,5,6)

3
Yie=A"Xj+ 2 A" X'

$==1

3
pix=— Ay en — '_21 AV X+ Adu

3
prix = — A¥len — '21 AR Xy + Ardy

A =Trdy' +Tedy', A= ArTr+ AsTr
Ar"=A;"+ A?', A::I=A;.r

Without loss of generality, here we can asume Ar = 0 and identify A, with the
hydrostatic pressure  p. The transfer coefficients A"™:® can depend on the state
parameters that are: ( one of the temperature I'p or Te, and, under specific
conditions, also the quantitites w and N,. These conditions consist of the possibility
of thermodynamic equlibrium when Tr = Tr and of atbitrary C,w and N,
and are realized for systems in which a spontaneous (at the expense of forces X*® and
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X3 ) variation of the coagulation state takes place sufficiently slowly., An example
is suspensions of coarse particles, wherein Brownian coagulat can be neglected in
comparison with the shear one.

3. In the case of a quasistationary mode for the fluctuation temperature [14] with
the conduction terms neglected the second equation in ( 2. 7) approximately reduces to
the finite relation O (X!, X2, X% = —pruexs  According to (2,10) the
right hand side here is proportional to  [» = ey ; hence for T follows the
expressions Tp = Tp (I,, C, Tr1, w, N,). Then the formulas for Y
and Y? in(2.10) can also be written as G=6G (I,,C, Tr, w, N;) and

g=¢gsC, Ty w, Np).  Thus, the fluctuation intensity, the growth rate
of the mumber of coagulates and the rate of fluid entrapment are represented as funct-
ions of the second invariant of the deformation rate tensor, When J, = ( (the
diffusion is negligibly weak)

dNa, dH dw
...dT=G’ -a-t--ag, —d—t-—.‘:zz (301)

g—Gw

(=*7")
Consequently, using a linear (in the sense of the relation between forces and fluxes)
formalism of nonequilibrium thermodynamics, for N, H and w we obtain non-
linear equations of coagulation kinetics of a very general form (the right hand sides in
(3. 1) virtually become. arbitrary functions of their arguments {f we complement the first
three of relations in (2, 10) by nonlinear nondissipative terms). Equations(3.1) are
comparable with the first moment eguations in [9], so that we can trace the connection
between G, g and the probability characteristics of the coagulation interactions
(the entrapment of the fluid was not taken into account §n [9]; this is not difficult to
do by keeping in mind the analogy of with the condensation process [15]).

Only two equations are independent in (3, 1) (see Sect, 2), In the particular case
when the fluid entrapment is uniquely determined by the coagulation process we should
assume w = w (C, N,;) and then only one of these equations remains independent.

If we additionally accept that C = const and do not consider the heat exchange

(I't = const), then the first and third equations in (2. 4), the formula for p,
in (2, 10) with coefficients A} * independent of Ty, and one of the equations in
(3. 1) form a system describing the motion of the simplest thixotropic fluid, viz,, with
one structural parameter,

4. In the model considered above it is possible to specify concretely the functions
G and £ and the transfer coefficients using empirical data or detailed physical con-

siderations including the investigation of the hydrodynamics of fine-scale motions,
Methods of dimensional analysis can be used for investigating the structure of the funct-
ions occuring in the description of the medium,

As an example let us consider a simple shear flow of a generalized thixotropic med-
ium with one structural parameter, We make the dependence of the transfer coeffici-
ents on the fluctuation temperature under the assumption of the latter quasistationarity,
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i.e., actually on the rate of shear., According to (2,10) and (3.1), for such flow
T =20, .. .)e, dw/dt =z(w,..) (M =AL" (4.1)

Let the shearstress be a function of the shear rate ¢, of the liquid phase viscosity

7o, the true concentration C of the particles, the density p of the mixture, the
mean volume w of coagulate, the parameter k7't (k is the Boltzmann constant),
whith characterizes the intensity of Brownian motion, and of the dimensionless quanti-
ties  %gs Ry - - o W/GE, W/, . ... The dimensionless constants %; and the
constants [; with the dimension of length are, by their origins, bound by the addit-
ional relations by which the parameter w is connected with the other essential struct-
ural parameters (we recall that by asumption the model contains only one independent
structural parameter), It is evident that instead of all these constants we can directly
include the dependent structural parameters themselves among the arguments of 7 .
Among these are: the apparent concentration H = H (C, w), the coagulat asy-
mmetry index A = w'/sllya; (W) (lmax I8 the maximum linear dimension of the
coagulat) , the relative dispersion of coagulates & (W) = (Wmax — Wnm)lw
with respect to dimensions, etc.

With due regard to these remarks we can write

2
1'=.—2q¢f(H, N -,‘*lfv’f;"-, b ) (4.2)

Further, we assume that C = const and occurs in f only in terms of H, A, . .

since the “phase” composition of the mixture is determined precisely by the apparent

concentration H. The last of the arguments in f is the Reynolds number R, for

the coagulate, The mechanisms of thixotropy and nonlinear viscosity, as a rule, are

not connected with the inertial effects (for blood, for instance, the modes when R,
< 107%)  are of interest); therefore, from now on we assume

r=2naef(fz', Ao, ... -k'-‘-"%) (4.3)

We see that two essentially distinct mechanisms of noalinearity of function 7 (¢)
exist. One of them is due to Brownian motion and is accompanied by the dependence
of the viscosity on the size of the particles (see the last argument in ), which is
fully consistent with microrheological representations [16,17]. The second mechanism
is indpendent of Brownian effects and is caused by the dependence of the structural
patameters H, A, 8, .. on e by virtue of the second equation in (4. 1). It is precis-
ely the second mechanism that corresponds to the case of a purely thixotropic medium:
T = 2neef (H, A, 8, ...). From (4.3) it follows that when there is no entrap-
ment of the liquid (H = C = const) in a monodisperse suspension (5 = 0) the
viscosity is independent of the absolute size of particles if they vary in 2 geometrically
similar manner (A = const). For spherical particles this conclusion has been con-
firmed experimentally and was repeatedly obtained on other considerations [18].
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Formula (4. 3) shows also that for a polydisperse suspension the viscosity is determined
not only by concentration but also by the fractional composition (related empirical
data have been presented, for instance, in [19].

Let us now turn to the second equation in (4. 1) which describes the variation of the
average volume of a coagulate, First, we note that for w = w (C, N,),C = const
and H = H (C, w) the functions 2, g and G differ by factors depending only
on C and w. According to [9] the function G, and, consequently, z, can be re-
presented as a sum of three summands z,, 3; and 3z, which correspond, respectively,
to the fusion, disintegration, and exchange interactions of the coagulat. For simplicity
we assume that the exchange interactions are such that the numerical concentration of
the coagulata is not changed; then 3z, = (.

Let 2, =32,(w, H, A, 5,...,¢, %, kT7) and 2; = 2, (w, H, A, 5, . . .,

e, Mo, Oy), where 0; is the mean critical stress for the coagulate and 1, occurs
in z; only in combination with e, namely, in terms of the stress T (4.3).
Then

d
S =w e[;,,(H,x,a,...; %)—g(H,A,G,...; %’-)] (4.4

A purely thixotropic medjum, in which the effects of Brownian motion are negligit-
ly small, is described by the relations

T=2ef (H, A 8,...), H=H@W), h=A@W),... (45
dw

T5.,,,,[;,(11 Mo, . )—;,(H.K,G-.--. ie")]

In the absence of disintegrations ({; = 0) and of fluid entrapment (H = C), if,
A = const and § = const we obtain the well-known equation of shear co-
agulation [15], In the general case the shear rate ¢ is a time function € = €,9

(t71t,) characterized by not more than two dimensional constants €, and .
Thierefore, instead of (4. 4) we can write
t
T = = estawp (L ) Ga—1) (4.6)

If the shear mechanism of coagulation predominates, then when e,f, > 1 we obtain
L. — La = 0, whence follows the finite connection between <1, ¢ and w,
Combining it with (4, 3), we arrive at a model of a nonlinearly-viscous medium with
a rheological equation that does not explicitly contain the particle size. The physical
sense of the inequality e,t, > 1 is obvious: the typical time for a change in the
stmcture (~1/e,) is very much less than the typical "hydrodynamic " time 1,.
In the other limit case, when e,f, <€ 1 (for example, a small amplitude or a high
frequency), under a periodic variation of ¢ we obtain w = wy(1 + O(e,t,)).
The constant w, is found from Eq. (4.6) by averaging over the period.
When ¢ =0 itis generally necessary to allow for Brownian effects, In the
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absence of a spontaneous disintegration of coagulates, instead of (4.4) we have

We see that when A = const, A = const and § = const the average size of the
coagulates grows linearly, while the numerical concentration Ny~ 3. Thisis
in complete agreement with the results of the kinetic theory of coagulation [9, 201,
Among the assumptions made we have not included any constraints on the multiplicity
of interactions; nevertheless, (4.5) is consistent with the equation obtained from the
general kinetic equations {9] for paired collisions. A reason for this can be the absence
(in contrast, say, to the equations of chemical kinetics) of an interaction cross-section
among the independent arguments of z,. Equations of a form more general than

(4. 5) arise when addit{onal independent arguments are introduced in zs and 27 ,
reflecting the physical properties of the coagulates and formed by using the constants
occurring in Uy and Up as well as by allowing for the influence of finite R; on the
coagulation.

5. Let us note certain possible generalizations and modifications of the arguments
made in Sects, 2 and 3,

1, We assumed above that the components Uy and Up of theintemal energy and
a number of other quantities depend only upon two characteristics of the structure, viz.,

w and H (or Ny and H ), i.e., on the first two moments of the distribution func-
tion of coagulate size [9]., Only one of the moments was reckoned independent in Sect.
4, However, itis possible that the quantities named depend also on the higher moments.
Their introduction implies the emergence of new summands in the dissipative function,
of new defining equations and of new cross effects, and leads to an increase in the order
of the system of structural equations,

2. In certain cases the intemal energy is generally determined not only by the size
distribution of the coagulat but also by more refined statistical characteristics, for
example, by the trapped fluid distribution with respect to the elongation A, to the
amount of trapped fluid, etc.

3. ‘The allowance for the internal degrees of freedom —the microrotation and the
microdeformation of the coagulates —leads to a number of additional effects, in part-
icular, the dependence of the fluctuation temperature and of the rate of change of the
structure on the invariants of the micromotion tensors, without affecting the general
character of the model.

4. If, as was done in [14], we examine a two-phase medium consisting of a
liquid phase and of coagulat, then the fluid .entrapment is described as 2 phase transi-
tion, In contrast to the one ~phase case, in the two —phase analysis the gradients

8H | zx (ot oC [ dzx) serve as parameters of state, Therefore, an anisotropy of
the transfer processes can exist, while among the arguments of the thermodynamic flux~
es in particular, of function G, there may be present also scalars of the form

aH oH 0HX‘ aH 3Hx,
Bz, 0z, ' Bz k' Oz, Oz, “ Ik
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where X)® and Xp® are, respectively, tensors of first and second rank that have
the meaning of thermodynamic forces (see (2, 9)).

5. Also possible is a multiphase analysis when the mixture is assumed to consist
of a liquid zero and of a solid phase, each of which combine coagulates of like size.
Combining the arguments in Sect, 2 and in [14,21], we can find the rate 6™  of
formation of coagulates of » particles as a function (in the quasistationary case) of
deformations rates and of numerical concentrations N,™ of coagulates of different
sorts, The equations for Ng™, in which G™ occurs, form an analog of the kinetic
equations of coagulation for a discrete distribution by size [9]. One variant of a multi-
phase model of such a type has been proposed previously (see {14]).

6. For the diffusion fluxes J; , from (2, 10) we obtain representations in terms
of the gradients of u, Ty, Tp, w and Na with variable coefficients, As in [14], these
relations take into account the fluctuation mechanism of diffusion intensification and,
in addition, reflect a tendency to the smoothing of the mixture’s composition both with
respect to concentration and to coagulate sizes,

The discussions in Sects.3 and 4 did not take into account these diffusion effects
and the conductive transfer of the fluctuation energy. Such an approximation is valid
if the corresponding transfer coefficients (of the “fluctuation thermal condutivity” and
the diffusion) are small and there are no zones of higher gradients of 77, H,... .
However, the fluxes may contain regions where the nondifferential terms of the corres~
ponding equations are also small, for example, regions where I, = 0. From the
point of view of the equations in Sects. 3 and 4, in these regions Tp =Ty and

dw/dt >0 (a very slow Brownian growth of coagulates takes place). But if the
transfer coefficients{for instance viscosity)depend strongly on Tp close to Iy and
on w, then the small absolute error permitted in the computation of 7p and w
leads to large errors in the determination of the other quantities, Thus, the validity
of the elementary models of a thixotropic medium is violated not only in the boundary
layers with large gradients but also in the boundary layers of a special type, where the
conductive effects and processes induced by the shear in the flow (fluctuations, forma-
tion and disintegration of coagulates) are simultaneously weak, A more exact analysis
of the processes in regions where I, = 0 can be made with the use of the method

of singular perturbations,

As a typical example let us consider the stationary problem on fows of Poiseille
type in a plane slit |YI<1 (Y=y/h isa dimensionless coordinate), Let
the distribution of the velocity u (Y) be known and let it be required to find a funct-
ion Z(Y) subject to the equation (all quantities below are dimensionless)

e(DZ'Y — W(Y,2)=0, eDZ' =0 for Y = =1 (6.1)

The " degenerate” (when €= 0) solution Z_ (Y) satisfies the equation W (Z,,

Y) = 0. The differences between Z and Z_ are localized in the "boundary layers”
close to the axis and walls of the channel; here Z—2,=0(%, a>0. The
main interest is in the quantity  Z, (e) = Z (0).
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Let 2, =~ AY", W/ D =~ BZ,"Y¥, and Z~1Zy when Y L1, with 22>0,
m2>1, and k> 0. Then in the neighborhood of the axis 2" ~ BZ,PYk,
whence Z = Z, + e BZymY**2 ) (k + 1) (k + 2). Forsome Y = § this solut-

ion must smwothly join up with Z; therefore, we set

A8™ = Zy + e IBZ™6 Y [ (k + 1) (k + 2) (6.2)
And™! = g 1IBZ,MER / (ko 4 1)

Hence § and Z, are found explicitly in terms of the other parameters of the problem.
The second relation in (6, 2) shows that  Z,™ / & ~ 8"**; then from the first follows
an estimate of the order of Z, and, finally, the estimates  § ~ g™1~™)+k-2 apq
Z, ~ 3™ We see that the orders of smallness of & and Z, may prove to be sub-

stantially lower than e.

Analogous results are obtained when solving (6. 1) by the method of integral relat-
ions,

According to (2. 7) and (2. 10) the simplest equation for the fluctuation temperature
in a plane sift has the form

e (kpTp') —~ky(Tp — Typ) by (@' =0 (6.3)

If kp(0), %, (0) and kg (0) are finite and nonzero and (u')? ~ Y%, then n = 2,

m=1 and k=0 and, consequently, Tp — Ty ~¢ and &~ Ve . Withdue
regard to (2, 5) and Sect. 4 we take it that the numerical concentration of coagulates
satisfies the simplified equation

e (DN, — Lo | W BNa® + Lol v/ [*N,® =0 (6.4)

Here D, {;, and {,, are finite and nonzero on the channel's axis, y = (@ — B) /
(b —a)>0, a,b,a, and B are nonnegative, Then n=19, m=b, k = p when
B<a and m=a, k=a when B>a, etc., Ifissomewhat more complicated

to realize estimates for 7p and N, in nonstationary flows, when an erdinary differ-

ential equation is obtained for Z,.
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